Inexact Josephy-Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization

نویسندگان

  • Alexey F. Izmailov
  • Mikhail V. Solodov
چکیده

We propose and analyze a perturbed version of the classical Josephy– Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilized version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian methods, in particular, we obtain superlinear convergence under the second-order sufficient optimality condition and the strict Mangasarian–Fromovitz constraint qualification, while previous results in the literature assume (in addition to second-order sufficiency) the stronger linear independence constraint qualification as well as the strict complementarity condition. For the sequential quadratically constrained quadratic programming methods, we prove primal-dual superlinear/quadratic convergence under the same assumptions as above, which also gives a new result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact Josephy–newton Framework for Genereralized Equations and Its Applications to Local Analysis of Newtonian Methods for Constrained Optimization∗

We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian meth...

متن کامل

Inexact Josephy–Newton framework for variational problems and its applications to optimization

We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations, and of the sequential quadratic programming method for optimization problems. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version [9, 2], sequential quadratically constrained quadratic programming [1, 4...

متن کامل

Optimization Methods in Banach Spaces

In this chapter we present a selection of important algorithms for optimization problems with partial differential equations. The development and analysis of these methods is carried out in a Banach space setting. We begin by introducing a general framework for achieving global convergence. Then, several variants of generalized Newton methods are derived and analyzed. In particular, necessary a...

متن کامل

Newton-Type Methods: A Broader View

We discuss the question of which features and/or properties make a method for solving a given problem belong to the “Newtonian class.” Is it the strategy of linearization (or perhaps, second-order approximation) of the problem data (maybe only part of the problem data)? Or is it fast local convergence of the method under natural assumptions and at a reasonable computational cost of its iteratio...

متن کامل

The Josephy–newton Method for Semismooth Generalized Equations and Semismooth Sqp for Optimization

While generalized equations with differentiable single-valued base mappings and the associated Josephy–Newton method have been studied extensively, the setting with semismooth base mapping had not been previously considered (apart from the two special cases of usual nonlinear equations and of Karush-Kuhn-Tucker optimality systems). We introduce for the general semismooth case appropriate notion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010